Modeling Personal and Population Exposures to Environmental chemicals

Thomas E. McKone

University of California, Berkeley

Lawrence Berkeley National Laboratory

Overview

- Exposure modeling questions
- Exposure modeling approaches
 - **7** Time average concentration
 - **7** Time series simulation
 - 7 Cumulative contact/cumulative intake
- Model output
- Model evaluation

Exposure Definitions

Exposure refers generally to the physical contact of an organism with a substance present in a liquid, solid, or a gas.

A profile of exposure in time

Exposure Modeling Questions

- Compare populations
- Time-weighted average concentration
- Time-weighted average above a threshold
- Peak exposure
- Number, duration of peak exposures
- Cumulative contact
- Cumulative intake

Exposure Models

- Time series/exposure event simulation
- Time average concentration
- Cumulative contact and cumulative intake
- Biomarker

Source to Dose Assessment

Activity Patterns and Time Series

- An activity pattern is simply a time budget of an individual's activities over some period of time.
- The activities can be described in terms of type (e.g., recreational, personal care, etc.), temporal variation, and location.
- Data on activity patterns

 can be derived from diaries
 that participants in time activity surveys complete
 and from telephone surveys
 that request respondents
 to recall time-activity
 behaviors.

Indoors at home	Indoors away from home
Outdoors at home	Outdoors away from home

Pesticide intake depends on release location, transport and fate, and human intake through competing exposure pathways

Exposure (Concentration) Model

$$\sum_{i} C_{i} t_{i}$$
$$E = \frac{i}{\sum_{i} t_{i}}$$

- E = average exposure in mg/m³ over the period T = Σt_i
- C_i = concentration in mg/m³ in microenvironment i
- t_i = time spent in microenvironment i

Multimedia Mass Balance Models

Chlorinated Benzene Series

Multimedia to Multipathway Exposure

Basic Intake/Uptake Model

Exposure Histogram (HCB)

Biomarkers/Biomonitoring

Biomarkers

- * Susceptibility
- * Exposure
- * Effect

Biological media

- ✤ Breath Saliva
- ✤ Urine Blood
- * Other--lipid samples, biopsies

Biomonitoring

- * Who is exposed?
- How does exposure vary?
- * Does exposure correlate with disease?
- * Is exposure changing in time?

Model Outputs

- Population/Pollutant classification
- Peak exposure
- Persistence
- Cumulative intake by day, month, year, gender, age etc.
- Time-weighted concentration
- Source-intake ratios (intake fraction)

Model Performance Evaluation

Simple vs Complex

Organophosphate Pesticide Use

The Salinas Valley is a region of intense pesticide use

Probability plot for the distributions of total **diet hyl** and **dimet hyl** phosphate concentrations the CHAMCOS mothers at baseline visit to the clinic (585 samples) and NHANES subjects who are female (996 samples)

Discussion/Conclusions

How can we use models to support exposure assessments?

- Insight
- > Repositories of existing knowledge
- > Exploring plausible exposure pathways
- Integrated metrics of source/dose relationships
- > Accurate predictions of exposure???

Evaluation--confronting model limits

- > Relevance Transparency Complexity
- > Uncertainty
- > Do people trust the model?

The End... Thank you

I want to acknowledge the research support our group receives from the US EPA National Exposure Research Laboratory

and from

The Center for Disease Control and Prevention (CDC) Health Tracking Program

